DO NOW

Use the given information to write a function in the form f(x) = mx + b:

$$m=-2$$
 and $f(-2)=8$

$$y-y_1 = m(x-x_1)$$

 $y-8 = -2(x-2)$

$$y = -2x - 4 + 8$$

$$f(x) = -2x + 4$$

Page 1

3.5 Functions - (continued)

function notation -
$$f(x) \leftarrow \text{"} f \text{ of } x \text{"}$$

 $g(x) \leftarrow \text{"} a \text{ of } x \text{"}$

 $g(x) \leftarrow "g \text{ of } x"$ *Allows the use of multiple equations

function - pairs each element of the DOMAIN with one and only one element of the RANGE

*No two ordered pairs have the Same x-value

When listing domain and range:

- put numbers in order
- -do not repeat numbers

Page 2

Find the domain and range of each relation. Also determine whether the relation is a function.

1. $\{(1,4),(2,5),(3,6),(4,7)\}$

domain: \$1,2,3,43 range: \$4,5,6,73

* no repetition of x-values function

2. $\{(3, 1), (5, 4), (3, 6), (8, 9)\}$

domain: \$3,5,83 range: \$1,4,6,93

not a function * There are 2 x-values of 3

domain: {cat, dog, to, of, given} range: {2,3,5} function

Page 3

Vertical Line Test - If no vertical line can be drawn that intersects the graph more than once (at the same instant), then the graph is a function.

4. Which of the following graphs are of functions?

a. function

b. function

- c. function
- d. function
- e. not a function

Page 4

Page 6

3.6 The Algebra of Functions

Operations on functions:

It is possible to perform the four basic operations $(+,-,x,\div)$ on functions

Sum:
$$f+g = f(x)+q(x)$$

difference:
$$f - g = f(x) - g(x)$$

product:
$$f \cdot g = f(x) \cdot g(x)$$

product:
$$f \cdot g = f(x) \cdot g(x)$$

quotient: $\frac{f}{g} = \frac{f(x)}{g(x)}$

5. If f(x) = 4x + 1 and g(x) = 3x for each of the following, find the function h(x) and state any restrictions to the domain.

a.
$$f+g$$

$$h(x) = f(x) + g(x)$$
$$h(x) = 4x + 1 + 3x$$
$$h(x) = 7x + 1$$

b.
$$f - g$$
 $h(x) = f(x) - g(x)$
 $h(x) = 4x + 1 - 3x$
 $h(x) = x + 1$

c.
$$f \times g$$
 $h(x) = f(x) \cdot g(x)$

d.
$$\frac{f}{g} = \frac{h(x) = 3\chi(4\chi + 1)}{h(\chi) = 12\chi^2 + 3\chi}$$

$$h(\chi) = \frac{f(\chi)}{g(\chi)}$$

Page 5

HOMEWORK

Worksheet - HW 3.6 Functions

Page 7